
Published online 28 November 2016 Nucleic Acids Research, 2017, Vol. 45, Database issue D925–D931
doi: 10.1093/nar/gkw1084

YM500v3: a database for small RNA sequencing in
human cancer research
I-Fang Chung1,†, Shing-Jyh Chang2,†, Chen-Yang Chen1, Shu-Hsuan Liu3,4, Chia-Yang Li5,6,
Chia-Hao Chan2, Chuan-Chi Shih2 and Wei-Chung Cheng3,4,*

1Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan, 2Department of Obstetrics
and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City 30071, Taiwan, 3Graduate Institute of Biomedical
Sciences, China Medical University, Taichung, 40402, Taiwan, 4Research Center for Tumour Medical Science, China
Medical University, Taichung, 40402, Taiwan, 5Department of Genome Medicine, College of Medicine, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan and 6Center for Infectious Disease and Cancer Research, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan

Received September 15, 2016; Revised October 24, 2016; Editorial Decision October 24, 2016; Accepted October 26, 2016

ABSTRACT

We previously presented the YM500 database, which
contains >8000 small RNA sequencing (smRNA-seq)
data sets and integrated analysis results for various
cancer miRNome studies. In the updated YM500v3
database (http://ngs.ym.edu.tw/ym500/) presented
herein, we not only focus on miRNAs but also on
other functional small non-coding RNAs (sncRNAs),
such as PIWI-interacting RNAs (piRNAs), tRNA-
derived fragments (tRFs), small nuclear RNAs (snR-
NAs) and small nucleolar RNAs (snoRNAs). There
is growing knowledge of the role of sncRNAs in
gene regulation and tumorigenesis. We have also
incorporated >10 000 cancer-related RNA-seq and
>3000 more smRNA-seq data sets into the YM500v3
database. Furthermore, there are two main new sec-
tions, ‘Survival’ and ‘Cancer’, in this updated version.
The ‘Survival’ section provides the survival analy-
sis results in all cancer types or in a user-defined
group of samples for a specific sncRNA. The ‘Cancer’
section provides the results of differential expres-
sion analyses, miRNA–gene interactions and cancer
miRNA-related pathways. In the ‘Expression’ section,
sncRNA expression profiles across cancer and sam-
ple types are newly provided. Cancer-related sncR-
NAs hold potential for both biotech applications and
basic research.

INTRODUCTION

Since next generation sequencing (NGS) has become the
norm for large-scale genomics research (e.g. The Cancer
Genome Atlas, TCGA), small RNA sequencing (smRNA-

seq) has shed light on the variations in the expression of
small non-coding RNAs (sncRNAs) among different de-
velopmental stages and disease states (1). Although the use
of smRNA-seq was popularized in genomics studies, most
such research has primarily focused on miRNAs, which rep-
resent only a subset of all small RNA species. However, the
functionality of other sncRNAs, such as PIWI-interacting
RNAs (piRNAs), tRNA-derived fragments (tRFs), small
nuclear RNAs (snRNAs) and small nucleolar RNAs (snoR-
NAs), remain an important topic. Increasing evidence has
shown that these non-miRNA sncRNAs also play signif-
icant roles in regulating cellular processes, such that their
dysfunction would consequently contribute to cancer pro-
gression (2). Hence, the investigation of dysregulation of
other classes of sncRNAs in the context of cancer, as well
as of their therapeutic and diagnostic values, is of great im-
portance. For example, a growing number of studies have
reported that aberrant piRNA expression is a signature
marker across distinct tumor types (3) and that snoRNAs
act as oncogenes in tumorigenesis (4–6). The integration
of large-scale smRNA-seq data helps researchers study the
roles of these functional sncRNAs in cancer progression,
but questions remain concerning the optimal methodolo-
gies for analysis, translation and utilization of such massive
amounts of data (7).

The role of miRNA in cancer progression has been well-
investigated in the past decade (8–11). miRNAs can affect
gene expression not only by suppressing protein transla-
tion but also by reducing the mRNA expression of a tar-
get gene, resulting in a correlation between the expression
levels of miRNAs and their target genes (12–14). Conse-
quently, the expression relationships between miRNAs and
genes are often used to predict miRNA–gene interactions
(15–17). Therefore, integrating miRNA and mRNA expres-
sion data across different cancer types is another approach
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Figure 1. The ‘Expression’ section. The exemplified expression boxplots of the (A) miRNA and the (B) piRNA across distinct cancers by sample types.

to providing a global miRNA–gene interactions, including
cancer-specific and cancer-wide miRNA–gene regulatory
networks. For instance, Meng et al. utilized the expressions
of miRNAs and mRNA in TGCA to identify miRNA–
target interactions (18). Many miRNA markers have been
proposed to be predictive of patient prognoses and clinical
responses and are being investigated in clinical trials (8). An
important step that researchers must take prior to propos-
ing miRNA-based biomarkers for clinical validation is their
evaluation in independent patient cohorts, and several web
tools, such as SurvMicro (19) and PROGmiR (20), have
been developed to help researchers link miRNA expression
with cancer outcomes.

Previously, we developed the YM500 database (21,22), a
database that contains more than 8000 cancer-related sm-
RNA data sets and includes analysis pipelines for novel
miRNA prediction, arm switching discovery, isomiR identi-
fication and miRNA quantification from smRNA-seq. The
previous version of this database focused only on miR-
NAs. For the updated version of the database, YM500v3,
presented in this study, we also examined other functional
sncRNAs in smRNA-seq data sets and incorporated >10
000 cancer-related RNA seq data sets and >3000 more
smRNA-seq data sets from TCGA. Moreover, two major
new sections, ‘Survival’ and ‘Cancer’, are provided in the
YM500v3 database. The ‘Survival’ section provides the sur-
vival analysis results for all cancer types or a customer-
defined group of samples for a specific sncRNA. The ‘Can-
cer’ section provides results regarding the differential ex-

pressions of sncRNAs and genes, miRNA–gene regulated
networks and cancer miRNA-related pathways.

DATA COLLECTION AND SMALL RNA ANNOTATION

The new smRNA-seq and RNA-seq data sets and clini-
cal data in TCGA were downloaded from CGHub (https:
//cghub.ucsc.edu/) and pre-processed as described in our
previous studies (22–24). In brief, all sequencing data were
pre-processed by in-house scripts. The clinical data for each
individual was manually curated based on the common data
element format, the standard elements of which are used in
TCGA. The annotations of miRNA and other sncRNA,
such as piRNA, snRNA, snoRNA and tRFs, are based
on miRBase database R21 (25) and DASHR database
v1.0 (26), respectively. The DASHR database contains 7641
sncRNA gene records and 9703 annotated mature sncRNA
product records. Supplementary Table S1 shows the de-
tailed information of sncRNAs in YM500v3.

DIFFERENTIAL EXPRESSION AND MIRNA-TARGET
INTERACTIONS

For differential expression analysis, we utilized an
R/Bioconductor package, DESeq (27,28) to identify
differentially expressed miRNAs, other non-miRNA
sncRNA and genes. The miRNA-target interactions in the
YM500v3 database can be grouped into three types, includ-
ing ‘Validated’, ‘Predicated’ and ‘Without any evidence’.

https://cghub.ucsc.edu/
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Figure 2. Two features of the ‘Section’ section. (A) ‘All cancer types’ contains a summary table for all the cancers and a Kaplan–Meier plot for each
individual cancer type. (B) ‘Specific sample group’ helps investigators define a subgroup of patients in a cancer type and provide a Kaplan–Meier plot for
the subgroup. Both of the two features contains two menu bars to control the stratification method and the follow-up time.

The ‘Validated’ interactions are based on the information
from miRTarBase database Release 6.1 (29), which contains
>366 000 interactions. The predicted miRNA targets were
identified by 12 miRNA target prediction tools, including
DIANA-microT (30), MicroT4 (31), miRBridge (32),
miRDB (33), miRMap (34), PITA (35), RNAhybrid (36),
TargetScan (37), PICTAR2 (38), RNA22 (39), miRWalk
(40) and miRanda (41). Only the targets that were identified
by at least six tools were retained to improve the reliability
of the prediction results. In the YM500v3 database, for
a specific cancer type, only the differentially expressed
miRNAs and genes, as identified by DESeq with q < 0.05
and fold change > 2, would be further calculated for the
Pearson, Spearman and Kendall correlations for each
miRNA–gene pair. The maximum absolute correlation
coefficient, max(|R|) and the minimum P-value of the three
correlation tests were also calculated for further filtration.

WEB INTERFACE

Expression

This section now contains not only miRNAs but also other
functional sncRNA annotated in the DASHR database.
Several statistical charts are added to the ‘Expression’ sec-
tion to help researchers realize the expression profile of a
given sncRNA across distinct cancer types. For example, the
expression profiles of the miRNA and piRNA across differ-
ent cancers by sample types are illustrated by boxplots in
Figure 1A and B, respectively. Supplementary Figure S1A
and B indicate the log2 ratio (tumors compared to adjacent

normal tissues) distribution across cancer types and the ex-
pression boxplot by sample types for each cancer type, re-
spectively. Moreover, a given sncRNA may have different
IDs in different sources. As such, we also provide a sequence
search function in the new database to overcome any incon-
sistencies in the IDs used by different sources.

Survival

This new section has two features: ‘All Cancer Types’ and
‘Specific Sample Group’. ‘All Cancer Type’ displays the sur-
vival analysis of a specific sncRNA (either miRNAs or other
sncRNAs) in all different cancer types (Figure 2A), includ-
ing a summary table for all the cancers and a Kaplan–Meier
plot for each individual cancer type. In addition, we also
provide two menu bars to control the stratification method,
such as ‘mean’ and ‘median’, and the follow-up time and
to display the results immediately. The default setting uses
the median expression value to divide the patients into two
groups in addition to using the entire follow-up time. ‘Spe-
cific Sample Group’ helps researchers define a subgroup of
samples in a single cancer type, such as triple negative breast
cancer, to perform survival analysis according to dozens of
clinical characteristics. Figure 2 shows that the high expres-
sion of hsa-miR-497-5p is related to good prognosis in triple
negative breast cancer (Figure 2B) but it does not signif-
icantly correlate with good prognosis in all breast cancer
patients (Figure 2A).
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Group1 Group2

Dataset Uterine_corpus_endometrial_carcinoma Uterine_corpus_endometrial_carcinoma

Sample Count 33 513

Sample Type Solid_tissue_normal Primary_solid_tumor

Clinical Condi�on None None
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Figure 3. The ‘Cancer’ section. This section stores the calculated results by (A) cancer types that contains the results of differential expression analysis,
including (B) miRNAs, (C) non-miR sncRNAs, (D) mRNAs. The correlations of each miRNA–gene pair were calculated and divided into three groups,
namely, (E) ‘Validated’, ‘Predicated’ and ‘Without any evidence’, as well as displayed by an (F) interactive network visualization. (G) The cancer miRNA-
related pathways were identified by the miRNA-interacted genes through functional enrichment analysis. The another feature, ‘Specific miRNA-gene
pairs’, help researchers examine the interactions between miRNAs and genes by (H) user-defined criteria and then the (I) miRNA–gene pairs are displayed
immediately. The width of the line in (I) indicates the number of records.
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Cancer

The ‘Cancer’ section stores the calculated results of differ-
ential expression analyses, miRNA–gene interactions and
cancer miRNA-related pathways for a specific cancer type
that contains the smRNA-seq and RNA-seq data of nor-
mal and tumor tissues for the same individuals. Figure 3
shows the results of uterine corpus endometrial carcinoma
in TCGA for 33 adjacent normal and 513 primary tumor
tissues (Figure 3A). There are 175 miRNAs (Figure 3B),
170 other sncRNAs (Figure 3C) and 3148 genes (Figure
3D) differentially expressed between normal and tumor tis-
sues. The correlations of each miRNA–gene pair between
the differentially expressed miRNAs and genes were cal-
culated and divided into three groups, namely, ‘Validated’,
‘Predicated’ and ‘Without any evidence’ (Figure 3E). In or-
der to illustrate the many-to-many relationships between
miRNA–gene interactions (Figure 3F), the Cytoscape Web
(48) tool is embedded for interactive network visualiza-
tion. The genes that interacted with miRNAs were further
functionally analyzed to address the cancer miRNA-related
pathways (Figure 3G). Detailed information regarding the
functional enrichment analysis method was presented in
our previous studies (24). Two menu bars are also provided
to control the criteria, the max(|R|) and the number of pre-
diction tools used in order to display the corresponding re-
sults.

We also provide another feature, ‘Specific miRNA-gene
pairs’, in the ‘Cancer’ section in order to help researchers ex-
amine the interactions between miRNAs and genes by user-
defined criteria. Researchers can enter multiple miRNAs
and/or genes, and can also define the interactions according
to max(|R|), minimum P-value, the number of prediction
tools and the validated information for the miRNA-gene
pairs (Figure 3H). After a query is submitted, the miRNA–
gene pairs identified according to the user-defined criteria
are then displayed immediately (Figure 3I). For the interac-
tions supported by multiple cancer types, the width of the
line indicates the number of records.

DISCUSSION

The library construction in smRNA-seq selects RNAs by
their lengths rather than their types. The libraries obtained
for smRNA-seq contain a variety of species of sncRNAs, in-
dicating that miRNAs represent only a subset of the species
obtained by size selection. Although miRNAs are only one
of the many sncRNA species in smRNA-seq data sets, miR-
NAs remain the most popular class to study, largely because
their biogenesis is relatively well understood and because
the regulatory mechanism in post-transcription is known
(42). However, more and more evidence shows that other
non-miRNA sncRNAs also play important roles in gene
regulation and certain diseases, such as cancers (5,7,43–45).
For instance, there is an increasing amount of knowledge
regarding the role of snoRNAs in cancer progression, and
the information obtained thus far suggests that snoRNAs
hold considerable potential for use as novel biomarkers and
therapeutic targets in cancer treatment (4–6). It has also
been reported that tRFs exhibit features of functional reg-
ulatory molecules (46–48), and they have a relatively well

described role in disease and infection (49–51). Unfortu-
nately, many researchers ignore the numerous non-miRNA
sncRNA species present in the smRNA-seq data. A com-
mon barrier is often the lack of genomic annotations for
these non-miRNA species. In this updated version of the
YM500 database, however, we not only focus on miRNAs
in smRNA-seq but also on other non-miRNA sncRNA ac-
cording to the well-annotated sncRNA database, DASHR.
Several functions in the updated database, including ‘Ex-
pression’, ‘Survival’ and ‘Cancer’, can assist researchers in
investigating sncRNAs.

The concept behind precision medicine is intuitive: in-
dividual patients are better modeled by a subgroup of pa-
tients, rather than a larger, more general population of pa-
tients (52,53). In seeking to adhere to this concept, the ‘Sur-
vival’ and ‘Meta-analysis’ sections provide functions to help
investigators define specific sample groups according to
dozens of clinical characteristics. In the ‘Survival’ section,
this concept has been exemplified by hsa-miR-497-5p that
has been reported as a ‘protective’ miRNA in triple nega-
tive breast cancer (54). Our analysis shows that the high ex-
pression of hsa-miR-497-5p is significantly related to good
prognosis in triple negative breast cancer but its expression
does not correlate with prognosis in all breast cancer pa-
tients (Figure 2). Furthermore, the ‘Meta-analysis’ section
contains the same types of results in the ‘Cancer’ section,
including differential expression analyses, miRNA–gene in-
teraction and miRNA-related pathway results, but the re-
sults in the ‘Meta-analysis’ section are based on the two
customer-defined groups. The ‘Cancer’ section only stores
the calculated results based on the two groups, the adjacent
normal and primary tumor tissues in the same cancer type.
For example, if a miRNA–gene interaction only exists in
some specific sample groups, it cannot be found in the ‘Can-
cer’ section but might be identified in the ‘Meta-analysis’
section. Moreover, the ‘Specific miRNA–gene interactions’
function in the ‘Cancer’ section helps researchers investi-
gate specific interactions according to a list of criteria that
they themselves have defined, with the width of lines in the
interactive network indicating the confidence.

It is currently a golden era in the field of genomics. Due
to the rapidly decreasing costs of sequencing, the obstacles
to performing genomic-scale NGS do not lie in the area of
data generation, but rather are obstacles affecting data anal-
ysis and storage (42). Although researchers in the field of
genomics are certainly aware of the mining of novel sncR-
NAs, many investigators currently choose not to fully ana-
lyze the sncRNAs in their smRNA-seq. Nonetheless, there
are still many complexities to be discovered in the sncRNA
transcriptome. To achieve this goal, we will continue to up-
date the smRNA-seq data sets and sncRNA annotations to
provide a comprehensive overview of up-to-date sncRNAs
in cancer research.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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